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Nonparametric Classification
k-Nearest Neighbors and Decision Trees
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Goal
We want to estimate…

pg(x) = P [Y = g ∣ X = x]



k-Nearest Neighbors (k-NN)

̂pg(x) = ̂P [Y = g ∣ X = x] = 1
k ∑

{i : xi∈$k(x,%)}
I (yi = g)



k-Nearest Neighbors (k-NN)

̂P [Y = A ∣ X = x] =

̂P [Y = B ∣ X = x] =

̂P [Y = C ∣ X = x] =
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k-Nearest Neighbors (k-NN)
Future Practical Considerations

• Beware the curse of dimensionality!


• If there are two categories, consider an odd value of  to avoid ties.


• Check documentation to see how specific implementations break unavoidable ties. 
Sometimes this is done at random!


• Can use any distance metric to determine nearest neighbors, but often Euclidean.


• Scaling of feature variables can have a big impact.


•  will need to be tuned.


• Recall: k-NN is fast at training time (memorize data), slow at prediction time.


• Recommended R package and function: caret::knn3
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Decision Trees
Neighborhoods via Recursive Partitioning



Decision Trees
Neighborhoods via Recursive Partitioning
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Decision Trees
Estimating Conditional Probabilities

̂pg(x) = ̂P [Y = g ∣ X = x] =
∑i I (yi = g) I (xi ∈ $(x))

∑i I (xi ∈ $(x))

̂pA(x1 = 0.9, x2 = 0.1) =

̂pB(x1 = 0.9, x2 = 0.1) =
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Decision Trees
Node Probabilities

̂pg ($) =
∑i I (yi = g) I (xi ∈ $)

∑i I (xi ∈ $)

̂pA =
̂pB =
̂pC =

̂pA =
̂pB =
̂pC =

̂pA =
̂pB =
̂pC =
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Decision Trees
Variance Measures for Nodes

Gini($) =
G

∑
g=1

̂pg (1 − ̂pg) = 1 −
G

∑
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̂p2
g

Entropy($) = −
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∑
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̂pg log ( ̂pg)

Error($) = 1 − max
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Decision Trees
Calculating Gini

Gini($) = 1 −
G

∑
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̂p2
g

̂pA =
̂pB =
̂pC =

̂pA =
̂pB =
̂pC =

̂pA =
̂pB =
̂pC =
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Decision Trees
How To Split

Consider all splits of the node  of the form: 


• Create node  where .


• Create node  where .


Determine the best split using:

$
$L xj < c

$R xj ≥ c

min
j,c [ |$L |

|$ |
Gini ($L) + |$R |

|$ |
Gini ($R)]

µ
WEIGHTS

\

-

VARIANCES



Decision Trees
Which Split?

|$L |
|$ |

Gini ($L) + |$R |
|$ |

Gini ($R) = |$L |
|$ |

Gini ($L) + |$R |
|$ |

Gini ($R) =

-

-

0.44T 0.416



Decision Trees
Future Practical Considerations

• Many possible tuning parameters depending on specific implementation. These could include:


• Minimum observations in node to split.


• Minimum improvement to accept split.


• Maximum tree depth.


• For splitting numeric features, only need to consider the midpoint between each of the order statistics of a feature.


• Beware: categorical features!


• Much faster than k-NN at prediction time.


• This will be useful later when we grow entire forests instead of single trees.


• We’ll also speed up training by adding randomness, which brings other benefits as well.


• Does feature scaling have an effect?


• Recommended R packages and functions: rpart::rpart, rpart.plot::rpart.plot


