CS 307 F ALL 2023

$CLASSIFICATION$ L AN INTRODUCTION

DATA VIEW

VISUAL DATA VIEW

 x_{i}

$$
C^{B}(x) = \underset{k \in \{1, \ldots, K\}}{\triangle} P[Y=k \mid X=x]
$$

 DCH

Example	Example		
X	\n $\frac{\text{DUNF}}{\text{DISTe(BOT)}}$ \n	\n $\frac{\text{DUNF}}{\text{DISTe(BOT)}}$ \n	
0	0.1	0.2	0.3
0.2	0.1	0.3	
0.4	0.4	0.5	
0.5	0.6	0.7	
0.4	0.6		
0.5	0.6		
0.6	0.7		
0.7	0.8		
0.8	0.9		
0.9	0.06		
0.1	0.9		
0.4	0.06		
0.5	0.6		
0.6	0.7		
0.7	0.8		
0.8	0.8		
0.9	0.06		
0.1	0.9		
0.4	0.06		
0.5	0.8		
0.6	0.8		
0.7	0.8		
0.8	0.8		
0.9	0.8		
0.1	0.		

$$
I - E_{x} \left[max \frac{P[Y=k|X=x]}{k} \right]^{a_{RREDUCISEE}^{a}} \text{Eercial}
$$

$$
= | - \left[P\left[Y = B | X = 0 \right] P\left[X = 0 \right] + P\left[Y = C | X = 1 \right] P\left[X = 1 \right] \right]
$$

$$
= | - \left[\left(\frac{0.2}{0.4} \right) (0.4) + \left(\frac{0.4}{0.6} \right) (0.6) \right]
$$

$$
= | - \left[C 0.2 + 0.4 \right] = \frac{0.4}{}
$$

$$
= [-0.2 + 0.4] = 0.4
$$

Example	$X Y=0$ - $N(x=5, r=1)$	$f_x(x)$
$X Y=1 - N(x=7, r=2)$	$f_y(x=2)$	
$T_0 = P[Y=0] = 0.6$		
$G = \left(x=6\right) = ?$		

$$
CALCULATE \qquad P[Y=0|X=6] = \frac{\pi_{0} \int_{0}^{6} (6)}{\pi_{0} \int_{0}^{6} (6) + \pi_{1} \int_{1}^{6} (6)} = \dots \qquad To \text{sc.PY}!
$$

$$
P[y=0|X=6] = \frac{\pi_{0}f_{0}(6)}{\pi_{0}f_{0}(6) + \pi_{1}f_{1}(6)}
$$
\n
$$
P[y=1|X=6] = \frac{\pi_{1}f_{1}(6)}{\pi_{0}f_{0}(6) + \pi_{1}f_{1}(6)}
$$
\n
$$
P[y=1|X=6] = \frac{\pi_{0}f_{0}(6) + \pi_{1}f_{1}(6)}{\pi_{0}f_{0}(6) + \pi_{1}f_{1}(6)}
$$
\n
$$
P[y=1|X=6] = \frac{\pi_{0}f_{0}(6) + \pi_{1}f_{1}(6)}{\pi_{0}f_{0}(6) + \pi_{1}f_{1}(6)}
$$

N PRACTICE

 $D_{ow}\tau$ $Kwow$ $PLY = k | X = 7$ $ESTMATE \t17$ LEARNED
CUTSSIPIER $C(x) = \text{AESMAX} \frac{\text{P}[y=k|X=x]}{\text{ESTMENT}}$ A "GUESS" ESTIMATE OF CONDITIONAL PROBABILITY $($ ^B (x) $H_{\alpha\omega}$ 1

Matrix	Proofs	Like	$P[C(x) \neq y]$
SETLE	For	$\frac{1}{n} \sum_{i=1}^{n} I(C(x_i) f(y_i))$	
EXECUTE	$\frac{1}{n} \sum_{i=1}^{n} I(C(x_i) f(y_i))$		
MISCLASSIPICATION	$\boxed{C(x_i) \neq y_i}$		

$$
\frac{1}{n} \sum_{i=1}^{n} \mathcal{I} \left(C(x_i) = y_i \right) \longleftarrow \text{accology}
$$

HOLDER $C(x)$ LEARNED
 $C^{\circ}(x)$ BAYES

Bivary ClassFictation
\n
$$
\gamma = 0
$$
 or $\gamma = 1$
\n $\gamma = 0$ or $\gamma = 1$
\n $\gamma = 0$
\n $\gamma = 1$
\n $\gamma = 0$
\n $\gamma = 1$
\n $\gamma =$

David Dalpiaz /// stat432.org

Nonparametric Classification k-Nearest Neighbors and Decision Trees

Classification Setup

Tabular View Graphical View

0.8

O

We want to estimate…

$p_g(x) = P[Y = g | X = x]$

k-Nearest Neighbors (k-NN)

 $\hat{p}_g(x) = \hat{P} \left[Y = g \mid X = x \right] =$ 1 \overline{k} \overline{r} $\{i : x_i \in \mathcal{N}_k(x, \mathcal{D})\}$ $I(y_i = g)$

k-Nearest Neighbors (k-NN)

Let $k = 5$ and $x = (0.5, 0.8)$.

k-Nearest Neighbors (k-NN) Future Practical Considerations

- Beware the **curse of dimensionality**!
- If there are two categories, consider an odd value of k to avoid ties.
	- Check documentation to see how specific implementations break unavoidable ties. Sometimes this is done at *random*!
- Can use any **distance** metric to determine nearest neighbors, but often Euclidean.
- **Scaling** of feature variables can have a big impact.
- k will need to be tuned.
- Recall: k-NN is *fast* at training time (memorize data), *slow* at prediction time.
- Recommended **R** package and function: **caret::knn3**

Decision Trees Neighborhoods via Recursive Partitioning

Decision Trees Neighborhoods via Recursive Partitioning

Decision Trees Estimating Conditional Probabilities

̂

$$
\hat{p}_g(x) = \hat{P}\left[Y = g \mid X = x\right] = \frac{\sum_i I\left(y_i = g\right) I\left(x_i \in \mathcal{N}(x)\right)}{\sum_i I\left(x_i \in \mathcal{N}(x)\right)}
$$

 \mathbf{r}

$$
\hat{p}_A(x_1 = 0.9, x_2 = 0.1) = \frac{1}{4}
$$

$$
\hat{p}_B(x_1 = 0.9, x_2 = 0.1) = \frac{3}{4}
$$

Decision Trees Node Probabilities

 $\hat{p}_{g}\left(\mathscr{N}\right) =% {\displaystyle\sum\limits_{s^{\prime}}^{\left[1+\left\{ 1-\delta\right\} \right] }}\left[\mathscr{N}\right]$ $\sum_i I(y_i = g) I(x_i \in \mathcal{N})$ $\sum_i I(x_i \in \mathcal{N})$

 $\hat{p}^{}_{A} =$ ̂ $\hat{p}^{}_{B} =$ ̂ $\hat{p}_C = \frac{2}{G}$ $4/g$ $2/8$

 $\hat{p}^{}_{A} =$ ̂ $\hat{p}_B = \frac{\partial}{4}$ $\hat{p}_B =$ ̂ $\hat{p}_C =$

 $\hat{p}^{}_{A} =$ ̂ $4/4$ $\hat{D}_1 = \frac{3}{4}$

̂ $0/4$ $\hat{p}_R = 2/4$

 $p_C = 24$

Decision Trees

 ${\hat p}_{\varrho}^2$ ̂ *g*

Variance Measures for Nodes
\n
$$
\text{Gini}(\mathcal{N}) = \sum_{g=1}^{G} \hat{p}_g \left(1 - \hat{p}_g \right) = 1 - \sum_{g=1}^{G}
$$

$$
\underline{\text{Entropy}(\mathcal{N})} = -\sum_{g=1}^{G} \hat{p}_g \log \left(\hat{p}_g\right)
$$

$$
Error(\mathcal{N}) = 1 - \max_{g} \left(\hat{p}_g\right)
$$

Decision Trees Calculating Gini

 $Gini(\mathcal{N}) = 1 -$ *G* ∑ *g*=1 ${\hat p}_{\varrho}^2$ ̂ *g*

$$
\begin{array}{c}\nA & A \\
B & A\n\end{array}
$$

 $V = 0.5$

 $\hat{p}^{}_{A} =$ ̂ $\hat{p}^{}_{B} =$ ̂ $\hat{p}_C =$ $\hat{p}_{\cap} = \frac{2I_{\subseteqfty}}{I_{\subseteqfty}}$ $Gini(\mathcal{N}) = 0.666$

Decision Trees How To Split

Consider all splits of the node N of the form:

- Create node \mathcal{N}_L where $x_j < c$.
- Create node \mathcal{N}_R where $x_j \geq c$.

Determine the best split using:

R window
$$
y = c
$$
.
est split using:

$$
\min_{j,c} \left[\frac{|\mathcal{N}_L|}{|\mathcal{N}|} Gini \right]
$$

Decision Trees Which Split?

 X_{I}

 $|\mathcal{N}_L|$ $|\mathcal{N}|$ $\mathsf{Gini}\left(\mathscr{N}_L\right) +$ $|\mathcal{N}_R|$ $|\mathcal{N}|$ $\operatorname{\mathsf{Gini}} \left({\mathscr N}_R\right) =$

 $|\mathcal{N}_L|$ $|\mathcal{N}|$ $\mathsf{Gini}\left(\mathscr{N}_L\right) +$ $|\mathcal{N}_R|$ $|\mathcal{N}|$ $O.444$
 $\frac{|\mathcal{N}_L|}{|\mathcal{N}|}$ Gini $(\mathcal{N}_L) + \frac{|\mathcal{N}_R|}{|\mathcal{N}|}$ Gini $(\mathcal{N}_R) = O.416$

Decision Trees Future Practical Considerations

• For splitting **numeric features**, only need to consider the midpoint between each of the order statistics of a feature.

- Many possible **tuning parameters** depending on specific implementation. These could include:
	- Minimum observations in node to split.
	- Minimum improvement to accept split.
	- Maximum tree depth.
-
- Beware: **categorical features**!
- Much *faster* than k-NN at prediction time.
	- This will be useful later when we grow entire forests instead of single trees.
	- We'll also speed up training by adding **randomness**, which brings other benefits as well.
- Does feature **scaling** have an effect?
- Recommended **R** packages and functions: **rpart::rpart, rpart.plot::rpart.plot**