CS 307: Week 13

# standard imports
import matplotlib.pyplot as plt
import numpy as np
import random
import os

# pytorch imports
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
from torchsummary import summary
# Download training data from open datasets.
training_data = datasets.KMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
)

# Download test data from open datasets.
test_data = datasets.KMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor(),
)
# Define batch size
batch_size = 64

# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
    print(f"Shape of X [N, C, H, W]: {X.shape}")
    print(f"Shape of y: {y.shape} {y.dtype}")
    break
Shape of X [N, C, H, W]: torch.Size([64, 1, 28, 28])
Shape of y: torch.Size([64]) torch.int64
# Get a batch of training data
batch = next(iter(train_dataloader))
images, labels = batch

# Plot the first batch of images
fig, axs = plt.subplots(8, 8, figsize=(10, 10))
for i in range(8):
    for j in range(8):
        axs[i, j].set_axis_off()
        axs[i, j].imshow(images[i * 8 + j].squeeze(), cmap=plt.cm.gray_r)
plt.show()

# Get cpu, gpu or mps device for training
device = (
    "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"Using {device} device")
Using mps device
# Define model
class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28 * 28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10)
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits


model_nn = NeuralNetwork().to(device)
print(model_nn)
NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
  )
)
# Define model
class ConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv_stack = nn.Sequential(
            nn.Conv2d(1, 32, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(32, 64, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Flatten(),
            nn.Linear(64 * 7 * 7, 10),
        )

    def forward(self, x):
        logits = self.conv_stack(x)
        return logits


model_cnn = ConvNet().to(device)
print(model_cnn)
ConvNet(
  (conv_stack): Sequential(
    (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (4): ReLU()
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=3136, out_features=10, bias=True)
  )
)
# Define loss function
loss_fn = nn.CrossEntropyLoss()

# Define optimizers
optimizer_nn = torch.optim.SGD(model_nn.parameters(), lr=1e-3)
optimizer_cnn = torch.optim.SGD(model_cnn.parameters(), lr=1e-3)
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    model.train()
    for batch, (X, y) in enumerate(dataloader):
        X, y = X.to(device), y.to(device)

        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        if batch % 100 == 0:
            loss, current = loss.item(), (batch + 1) * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
epochs = 5
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(train_dataloader, model_nn, loss_fn, optimizer_nn)
    test(test_dataloader, model_nn, loss_fn)
print("Done!")
Epoch 1
-------------------------------
loss: 2.313945  [   64/60000]
loss: 2.301249  [ 6464/60000]
loss: 2.301835  [12864/60000]
loss: 2.281255  [19264/60000]
loss: 2.285309  [25664/60000]
loss: 2.281746  [32064/60000]
loss: 2.291071  [38464/60000]
loss: 2.267421  [44864/60000]
loss: 2.271816  [51264/60000]
loss: 2.269926  [57664/60000]
Test Error: 
 Accuracy: 21.0%, Avg loss: 2.274607 

Epoch 2
-------------------------------
loss: 2.271723  [   64/60000]
loss: 2.258649  [ 6464/60000]
loss: 2.252648  [12864/60000]
loss: 2.236372  [19264/60000]
loss: 2.228143  [25664/60000]
loss: 2.233182  [32064/60000]
loss: 2.249004  [38464/60000]
loss: 2.193489  [44864/60000]
loss: 2.205827  [51264/60000]
loss: 2.207435  [57664/60000]
Test Error: 
 Accuracy: 30.6%, Avg loss: 2.231061 

Epoch 3
-------------------------------
loss: 2.212894  [   64/60000]
loss: 2.194100  [ 6464/60000]
loss: 2.178476  [12864/60000]
loss: 2.163684  [19264/60000]
loss: 2.134563  [25664/60000]
loss: 2.153082  [32064/60000]
loss: 2.181096  [38464/60000]
loss: 2.071425  [44864/60000]
loss: 2.096304  [51264/60000]
loss: 2.103439  [57664/60000]
Test Error: 
 Accuracy: 34.9%, Avg loss: 2.157738 

Epoch 4
-------------------------------
loss: 2.113696  [   64/60000]
loss: 2.081592  [ 6464/60000]
loss: 2.051588  [12864/60000]
loss: 2.044624  [19264/60000]
loss: 1.974878  [25664/60000]
loss: 2.017395  [32064/60000]
loss: 2.064107  [38464/60000]
loss: 1.886411  [44864/60000]
loss: 1.926542  [51264/60000]
loss: 1.937511  [57664/60000]
Test Error: 
 Accuracy: 39.7%, Avg loss: 2.048972 

Epoch 5
-------------------------------
loss: 1.960853  [   64/60000]
loss: 1.916072  [ 6464/60000]
loss: 1.874484  [12864/60000]
loss: 1.890733  [19264/60000]
loss: 1.752843  [25664/60000]
loss: 1.829327  [32064/60000]
loss: 1.904842  [38464/60000]
loss: 1.677428  [44864/60000]
loss: 1.726264  [51264/60000]
loss: 1.740170  [57664/60000]
Test Error: 
 Accuracy: 44.7%, Avg loss: 1.933193 

Done!
epochs = 5
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(train_dataloader, model_cnn, loss_fn, optimizer_cnn)
    test(test_dataloader, model_cnn, loss_fn)
print("Done!")
Epoch 1
-------------------------------
loss: 2.314611  [   64/60000]
loss: 2.294735  [ 6464/60000]
loss: 2.291432  [12864/60000]
loss: 2.271538  [19264/60000]
loss: 2.240789  [25664/60000]
loss: 2.235340  [32064/60000]
loss: 2.230359  [38464/60000]
loss: 2.154369  [44864/60000]
loss: 2.134482  [51264/60000]
loss: 2.080340  [57664/60000]
Test Error: 
 Accuracy: 41.1%, Avg loss: 2.140463 

Epoch 2
-------------------------------
loss: 2.100650  [   64/60000]
loss: 2.012050  [ 6464/60000]
loss: 1.919635  [12864/60000]
loss: 1.871289  [19264/60000]
loss: 1.604763  [25664/60000]
loss: 1.600619  [32064/60000]
loss: 1.627111  [38464/60000]
loss: 1.303081  [44864/60000]
loss: 1.269283  [51264/60000]
loss: 1.271949  [57664/60000]
Test Error: 
 Accuracy: 51.6%, Avg loss: 1.629555 

Epoch 3
-------------------------------
loss: 1.391366  [   64/60000]
loss: 1.183622  [ 6464/60000]
loss: 1.148979  [12864/60000]
loss: 1.142677  [19264/60000]
loss: 0.816237  [25664/60000]
loss: 0.961087  [32064/60000]
loss: 1.082015  [38464/60000]
loss: 0.902743  [44864/60000]
loss: 0.813347  [51264/60000]
loss: 0.971998  [57664/60000]
Test Error: 
 Accuracy: 57.8%, Avg loss: 1.365150 

Epoch 4
-------------------------------
loss: 1.062371  [   64/60000]
loss: 0.904881  [ 6464/60000]
loss: 0.901479  [12864/60000]
loss: 0.869897  [19264/60000]
loss: 0.607301  [25664/60000]
loss: 0.752270  [32064/60000]
loss: 0.876258  [38464/60000]
loss: 0.805358  [44864/60000]
loss: 0.647347  [51264/60000]
loss: 0.876209  [57664/60000]
Test Error: 
 Accuracy: 62.3%, Avg loss: 1.243965 

Epoch 5
-------------------------------
loss: 0.929853  [   64/60000]
loss: 0.815947  [ 6464/60000]
loss: 0.798895  [12864/60000]
loss: 0.783030  [19264/60000]
loss: 0.517595  [25664/60000]
loss: 0.662404  [32064/60000]
loss: 0.793572  [38464/60000]
loss: 0.765405  [44864/60000]
loss: 0.570984  [51264/60000]
loss: 0.824758  [57664/60000]
Test Error: 
 Accuracy: 64.3%, Avg loss: 1.169368 

Done!
# save the neural network model
torch.save(model_nn.state_dict(), "model_nn.pth")
print(f"Size of model_nn.pth: {os.path.getsize('model_nn.pth')} bytes")

# save the convolutional neural network model
torch.save(model_cnn.state_dict(), "model_cnn.pth")
print(f"Size of model_cnn.pth: {os.path.getsize('model_cnn.pth')} bytes")
Size of model_nn.pth: 2681682 bytes
Size of model_cnn.pth: 203548 bytes